Lecture 05: Spatial Data

Theory and Tools (a.k.a. GIS Tools Lab.)

Bruno Conte

02/0ct/2023

Spatial data in economics: schedule

- 1. Introduction to (spatial) data and programming in R [18.Sep.2023]
- 2. Spatial data basics: vector data + assignment [21.Sep.2023]
- 3. Basic operations with vector data + assignment [25.Sep.2023]
- 4. Geometry operations and miscelanea + follow-up + assignment [28.Sep.2023]
- 5. Raster data and operations + assignment [02.Oct.2023]
 - Raster basics: creating and loading rasters with terra
 - Operations: unary and vector-raster tools
 - Students' feedback survey
- 6. Take-home exam [03.Nov.2023]

Main references for this class

- 1. Lovelace, R., Nowosad, J. and Muenchow, J., 2019. Geocomputation with R. Chapman and Hall/CRC.
 - Chapters 2.3, 3.3, 4.3, 5.3, and 6
- 2. Pebesma, E., 2018. Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal 10 (1), 439-446
- 3. Wickham, H. and Grolemund, G., 2016. R for data science: import, tidy, transform, visualize, and model data. " O'Reilly Media, Inc.".

Raster data: basics

- GIS systems represent raster data as an "image":
 - Geography as continuum of pixels (gridcells) with associated values
 - Normally represents high resolution features of the geography (like an image)

A. Ce	ell IDs
-------	---------

B. Cell values

C. Colored values

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

92	55	48	21
58	70	NA	37
NA	12	94	11
36	83	4	88

Raster data: basics

• Normally represents high resolution features of the geography (like an image)

Elevation (m) -1,500 -2,000 -2,500

A. Continuous data

B. Categorical data

Raster data (and other operations with rasters) in R

Requires additional libraries/packages than sf

- 1. terra: contains most of the raster-related functions
- 2. exactextractr: performs high-performance zonal statistics
- 3. gdistance: used to calculate distances over raster

Raster basics: loading and creating with terra

• Raster data: represented with terra's SpatRaster object

Characteristics from source (file)

Your turn: Hands-in

Hands-in: your turn! (1/3)

Dividing Italy in **gridcells**

- Create a 1 x 1 degree raster
- Convert it to polygon (i.e. create the grid)
- Use world data filtered to Italy, keep gridcells that **intersect** with Italy
- Visualize it:

Hands-in: your turn! (2/3)

Calculating **climate change** in USA

- Use the us_states data on the geography of US states
- Combine it with the SPEI index:
 - Retrieve average SPEI index across states
 - $\circ~$ Do so for 3-4 different years
- Visualize it:

Hands-in: your turn! (3/3)

Geography and **bilateral distances** in Spain

- Use the ne_10m_populated_places shapefile to retrieve the 10 toppopulated places in Spain
- Crop the elevation data from MSR_50M.tif raster with Spain
- Visualize them together with plot() function
- Calculate the path and distance between Madrid and Vigo
 - Hint: approx. 640 km!

Your turn: Take-home Assignment

Take-home assignment (1/2)

Calculating **climate change** in USA

- Use the us_states data on the geography of US states
- Retrieve average SPEI index across **regions** for the past 50 years
- Retrieve the dataset as a panel (time series for each region)
- Plot the evolution of the SPEI index for each region
 - geom_smooth(): calculate the average across regions

Take-home assignment (2/2)

Transportation centrality and isolation in Spain

- Use the ne_10m_populated_places shapefile to retrieve the 10 toppopulated places
- Crop the ne_10m_roads road data within Spain
- Build a raster/friction surface; calculate distances between **all city pairs**
- Bilateral distances if coming from Madrid vs. Vigo: who is more isolated?
 - geom_density(): calculates"smoothed" distributions

Take-home assignment (2/2)

Transportation centrality and isolation in Spain

- Use the ne_10m_populated_places shapefile to retrieve the 10 toppopulated places
- Crop the ne_10m_roads road data within Spain
- Build a raster/friction surface; calculate distances between **all city pairs**
- Bilateral distances if coming from Madrid vs. Vigo: who is more isolated?
 - geom_density(): calculates
 "smoothed" distributions

