Lecture 05: Spatial Data

Theory and Tools (a.k.a. GIS Tools Lab.)

Bruno Conte
02/Oct/2023

Spatial data in economics: schedule

1. Introduction to (spatial) data and programming intR [18.Sep.2023]
2. Spatial data basies: vector data assignment [21.Sep.2023]
3. Basic operations with vector data assignment [25.Sep.2023]
4. Geometry operations and miscelanea-follow-up-assignment [28.Sep.2023]
5. Raster data and operations + assignment [02.Oct.2023]

- Raster basics: creating and loading rasters with terra
- Operations: unary and vector-raster tools
- Students' feedback survey

6. Take-home exam [03.Nov.2023]

Main references for this class

1. Lovelace, R., Nowosad, J. and Muenchow, J., 2019. Geocomputation with R. Chapman and Hall/CRC.

- Chapters 2.3, 3.3, 4.3, 5.3, and 6

2. Pebesma, E., 2018. Simple Features for R: Standardized Support for Spatial Vector Data. The R Journal 10 (1), 439-446
3. Wickham, H. and Grolemund, G., 2016. R for data science: import, tidy, transform, visualize, and model data. " O'Reilly Media, Inc.".

Raster data: basics

- GIS systems represent raster data as an "image":
- Geography as continuum of pixels (gridcells) with associated values
- Normally represents high resolution features of the geography (like an image)
A. Cell IDs
B. Cell values
C. Colored values

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

92	55	48	21
58	70	$N A$	37
NA	12	94	11
36	83	4	88

Raster data: basics

- Normally represents high resolution features of the geography (like an image)

A. Continuous data
 B. Categorical data

Raster data (and other operations with rasters) in R

Requires additional libraries/packages than sf

1. terra: contains most of the raster-related functions
2. exactextractr: performs high-performance zonal statistics
3. gdistance: used to calculate distances over raster

Raster basics: loading and creating with terra

- Raster data: represented with terra's SpatRaster object

Your turn: Hands-in

Hands-in: your turn! (1/3)

Dividing Italy in gridcells

- Create a 1×1 degree raster
- Convert it to polygon (i.e. create the grid)
- Use world data filtered to Italy, keep gridcells that intersect with Italy
- Visualize it:

Hands-in: your turn! (2/3)

Calculating climate change in USA

- Use the us_states data on the geography of US states
- Combine it with the SPEI index:
- Retrieve average SPEI index across states
- Do so for 3-4 different years
- Visualize it:

Hands-in: your turn! (3/3)

Geography and bilateral distances in Spain

- Use the ne_10m_populated_places shapefile to retrieve the 10 toppopulated places in Spain
- Crop the elevation data from MSR_50M.tif raster with Spain
- Visualize them together with plot() function
- Calculate the path and distance between Madrid and Vigo
- Hint: approx. 640 km!

Your turn: Take-home

Assignment

Take-home assignment (1/2)

Calculating climate change in USA

- Use the us_states data on the geography of US states
- Retrieve average SPEI index across regions for the past 50 years
- Retrieve the dataset as a panel (time series for each region)
- Plot the evolution of the SPEI index for each region
- geom_smooth(): calculate the average across regions

Take-home assignment (2/2)

Transportation centrality and isolation in Spain

- Use the ne_10m_populated_places shapefile to retrieve the $\mathbf{1 0}$ toppopulated places
- Crop the ne_10m_roads road data within Spain
- Build a raster/friction surface; calculate distances between all city pairs
- Bilateral distances if coming from Madrid vs. Vigo: who is more isolated?
- geom_density(): calculates "smoothed" distributions

Take-home assignment (2/2)

Transportation centrality and isolation in Spain

- Use the ne_10m_populated_places shapefile to retrieve the $\mathbf{1 0}$ toppopulated places
- Crop the ne_10m_roads road data within Spain
- Build a raster/friction surface; calculate distances between all city pairs
- Bilateral distances if coming from Madrid vs. Vigo: who is more isolated?

- geom_density(): calculates "smoothed" distributions

